Highly Oscillatory Problems with Time-Dependent Vanishing Frequency
نویسندگان
چکیده
منابع مشابه
Highly Oscillatory Problems: Computation, Theory and Applications
Oscillatory integrals are present in many applications, and their numerical approximation is the subject of this paper. Contrary to popular belief, their computation can be achieved efficiently, and in fact, the more oscillatory the integral, the more accurate the approximation. We review several existing methods, including the asymptotic expansion, Filon method, Levin collocation method and nu...
متن کاملMultiscale finite element for problems with highly oscillatory coefficients
In this paper, we study a multiscale finite element method for solving a class of elliptic problems with finite number of well separated scales. The method is designed to efficiently capture the large scale behavior of the solution without resolving all small scale features. This is accomplished by constructing the multiscale finite element base functions that are adaptive to the local property...
متن کاملFrequency-dependent oscillatory neural profiles during imitation
Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillato...
متن کاملHighly parallel alternating directions algorithm for time dependent problems
In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which the incompressibility constraint is ...
متن کاملHigh Order Numerical Methods for Highly Oscillatory Problems
This paper is concerned with the numerical solution of nonlinear Hamiltonian oscillatory systems of second-order differential equations of a special form. We present numerical methods of high asymptotic as well as time stepping order based on the modulated Fourier expansion of the exact solution. Furthermore, numerical experiments on the modified Fermi-Pasta-Ulam problem support our investigati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2019
ISSN: 0036-1429,1095-7170
DOI: 10.1137/18m1203456